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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation 

and Development (OECD) to implement an international energy programme. A basic aim of the IEA is to foster international co-operation 

among the 30 IEA participating countries and to increase energy security through energy research, development and demonstration in 

the fields of technologies for energy efficiency and renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive portfolio of Technology 

Collaboration Programmes (TCPs). The mission of the IEA Energy in Buildings and Communities (IEA EBC) TCP is to support the 

acceleration of the transformation of the built environment towards more energy efficient and sustainable buildings and communities, 

by the development and dissemination of knowledge, technologies and processes and other solutions through international collaborative 

research and open innovation. (Until 2013, the IEA EBC Programme was known as the IEA Energy Conservation in Buildings and 

Community Systems Programme, ECBCS.) 

The high priority research themes in the EBC Strategic Plan 2019-2024 are based on research drivers, national programmes within the 

EBC participating countries, the Future Buildings Forum (FBF) Think Tank Workshop held in Singapore in October 2017 and a Strategy 

Planning Workshop held at the EBC Executive Committee Meeting in November 2017. The research themes represent a collective input 

of the Executive Committee members and Operating Agents to exploit technological and other opportunities to save energy in the 

buildings sector, and to remove technical obstacles to market penetration of new energy technologies, systems and processes. Future 

EBC collaborative research and innovation work should have its focus on these themes. 

At the Strategy Planning Workshop in 2017, some 40 research themes were developed. From those 40 themes, 10 themes of special 

high priority have been extracted, taking into consideration a score that was given to each theme at the workshop. The 10 high priority 

themes can be separated in two types namely 'Objectives' and 'Means'. These two groups are distinguished for a better understanding 

of the different themes.  

 

Objectives - The strategic objectives of the EBC TCP are as follows: 

‒ reinforcing the technical and economic basis for refurbishment of existing buildings, including financing, engagement of stakeholders 

and promotion of co-benefits; 

‒ improvement of planning, construction and management processes to reduce the performance gap between design stage 

assessments and real-world operation; 

‒ the creation of 'low tech', robust and affordable technologies; 

‒ the further development of energy efficient cooling in hot and humid, or dry climates, avoiding mechanical cooling if possible; 

‒ the creation of holistic solution sets for district level systems taking into account energy grids, overall performance, business models, 

engagement of stakeholders, and transport energy system implications. 

 

Means - The strategic objectives of the EBC TCP will be achieved by the means listed below: 

‒ the creation of tools for supporting design and construction through to operations and maintenance, including building energy 

standards and life cycle analysis (LCA); 

‒ benefitting from 'living labs' to provide experience of and overcome barriers to adoption of energy efficiency measures; 

‒ improving smart control of building services technical installations, including occupant and operator interfaces; 

‒ addressing data issues in buildings, including non-intrusive and secure data collection; 

‒ the development of building information modelling (BIM) as a game changer, from design and construction through to operations 

and maintenance. 

 

The themes in both groups can be the subject for new Annexes, but what distinguishes them is that the 'objectives' themes are final 

goals or solutions (or part of) for an energy efficient built environment, while the 'means' themes are instruments or enablers to reach 

such a goal. These themes are explained in more detail in the EBC Strategic Plan 2019-2024. 

The Executive Committee 

Overall control of the IEA EBC Programme is maintained by an Executive Committee, which not only monitors existing projects, but also 

identifies new strategic areas in which collaborative efforts may be beneficial. As the Programme is based on a contract with the IEA, 

the projects are legally established as Annexes to the IEA EBC Implementing Agreement. At the present time, the following projects 
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have been initiated by the IEA EBC Executive Committee, with completed projects identified by (*) and joint projects with the IEA Solar 

Heating and Cooling Technology Collaboration Programme by (☼): 

 

Annex 1: Load Energy Determination of Buildings (*) 

Annex 2: Ekistics and Advanced Community Energy Systems (*) 

Annex 3: Energy Conservation in Residential Buildings (*) 

Annex 4: Glasgow Commercial Building Monitoring (*) 

Annex 5: Air Infiltration and Ventilation Centre  

Annex 6: Energy Systems and Design of Communities (*) 

Annex 7: Local Government Energy Planning (*) 

Annex 8: Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9: Minimum Ventilation Rates (*) 

Annex 10: Building HVAC System Simulation (*) 

Annex 11: Energy Auditing (*) 

Annex 12: Windows and Fenestration (*) 

Annex 13: Energy Management in Hospitals (*) 

Annex 14: Condensation and Energy (*) 

Annex 15: Energy Efficiency in Schools (*) 

Annex 16: BEMS 1- User Interfaces and System Integration (*) 

Annex 17: BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18: Demand Controlled Ventilation Systems (*) 

Annex 19: Low Slope Roof Systems (*) 

Annex 20: Air Flow Patterns within Buildings (*) 

Annex 21: Thermal Modelling (*) 

Annex 22: Energy Efficient Communities (*) 

Annex 23: Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24: Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25: Real time HVAC Simulation (*) 

Annex 26: Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27: Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28: Low Energy Cooling Systems (*) 

Annex 29: Daylight in Buildings (*)  

Annex 30: Bringing Simulation to Application (*) 

Annex 31: Energy-Related Environmental Impact of Buildings (*) 

Annex 32: Integral Building Envelope Performance Assessment (*) 

Annex 33: Advanced Local Energy Planning (*) 

Annex 34: Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35: Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36: Retrofitting of Educational Buildings (*) 

Annex 37: Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38: Solar Sustainable Housing (*)  

Annex 39: High Performance Insulation Systems (*) 

Annex 40: Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*) 

Annex 43: Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: Towards Net Zero Energy Solar Buildings (*)  

Annex 53: Total Energy Use in Buildings: Analysis and Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation and Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and Cost (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy and CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy and CO2 Equivalent Emissions for Building Construction (*) 



 
 

 8/51 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling and Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building and Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62: Ventilative Cooling (*) 

Annex 63: Implementation of Energy Strategies in Communities (*) 

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles (*) 

Annex 65: Long-Term Performance of Super-Insulating Materials in Building Components and Systems (*) 

Annex 66: Definition and Simulation of Occupant Behavior in Buildings (*) 

Annex 67: Energy Flexible Buildings (*) 

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings (*) 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements 

Annex 72: Assessing Life Cycle Related Environmental Impacts Caused by Buildings 

Annex 73: Towards Net Zero Energy Resilient Public Communities 

Annex 74: Competition and Living Lab Platform 

Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency and Renewables 

Annex 76: Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO2 Emissions 

Annex 77: Integrated Solutions for Daylight and Electric Lighting  

Annex 78: Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications 

Annex 79: Occupant-Centric Building Design and Operation 

Annex 80: Resilient Cooling 

Annex 81: Data-Driven Smart Buildings 

Annex 82: Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems 

Annex 83: Positive Energy Districts 

Annex 84: Demand Management of Buildings in Thermal Networks 

Annex 85: Indirect Evaporative Cooling 

Annex 86: Energy Efficient Indoor Air Quality Management in Residential Buildings 

Annex 87: Energy and Indoor Environmental Quality Performance of Personalised Environmental Control Systems 

Annex 88: Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings 

Annex 89: Ways to Implement Net-zero Whole Life Carbon Buildings 

Annex 90: EBC Annex 90 / SHC Task 70 Low Carbon, High Comfort Integrated Lighting 

Annex 91: Open BIM for Energy Efficient Buildings 

Annex 92: Smart Materials for Energy-Efficient Heating, Cooling and IAQ Control in Residential Buildings 

Annex 93: Energy Resilience of the Buildings in Remote Cold Regions 

Annex 94: Validation and Verification of In-situ Building Energy Performance Measurement Techniques 

Annex 95: Human-centric Building Design and Operation for a Changing Climate 

Annex 96: Grid Integrated Control of Buildings 

Annex 97: Sustainable Cooling in Cities 

 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings (*) 

Working Group - Cities and Communities 

Working Group - Building Energy Codes 
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Summary 

Subtask C of the IEA EBC Annex 84 aims to explore and review the current body of knowledge in data-driven 

methods and tools for smart thermal operation of buildings and district heating and cooling networks. 

This report summarizes the key findings of the IEA EBC Annex 84 Subtask C. It aims to provide a compre-

hensive overview of state-of-the-art methods, frameworks, software, numerical tools and algorithms relevant 

to smart thermal management of individual buildings and building clusters connected to district heating and 

cooling (DHC) networks. It covers aspects such as dynamic modelling, large data treatment and analysis, 

automated fault detection and digital twins for the orchestration of the smart thermal operation, and demand 

response of buildings integrated into thermal grids. The focus lies on achieving energy-efficient, cost-effective 

and sustainable district heating and cooling grids. The objective of this document is to guide professionals, 

researchers, policymakers, and stakeholders interested in the latest advancements in building energy man-

agement that benefit district heating and cooling systems. 

The key findings of the IEA EBC Annex 84, Subtask C are as follows: 

• Limited suitability of existing modelling tools and co-simulation frameworks for smart control and optimi-

zation of large DHC networks with multiple buildings performing demand response and building-to-grid 

services. 

• Future tools should be easier to use, better documented, and capable of balancing accuracy and perfor-

mance when simulating large building clusters. 

• The increasing availability of high-resolution smart meter data provides valuable insights into building 

energy use, but data challenges such as missing values, low resolution, and lack of load disaggregation 

need to be addressed to fully leverage smart meter data. 

• Digital twins can support real-time monitoring, forecasting, optimization, and fault detection, improving 

overall system efficiency and reliability. They are considered a key technology for the optimal control and 

operation of future smart thermal grids with building clusters performing demand response. 

• Machine learning approaches are being developed for automated fault detection and diagnosis, but pro-

gress is constrained by the lack of labeled and standardized data with ground truth on the fault occur-

rence and nature. 

• Real-world implementation of smart building and smart DHC solutions is challenged by diverse data 

formats, hardware, control systems, and protocols. Standardization through ontologies, BIM (Building 

Information Modelling), and semantic principles is key to enabling interoperability and scalability. 
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Abbreviations 

Abbreviations Meaning 

AFDD Automated fault detection and diagnosis 

API Application programming interface 

B2G Building-to-grid 

BEM Building energy modelling 

BIM Building information modelling 

BSEC Building and socio-economic characteristic 

CHP Combined heat and power 

DC District cooling 

DH District heating 

DHC District heating and cooling 

DHN District heating network 

DHW Domestic hot water 

DMKD Data mining and knowledge discovery 

DR Demand response 

DSM Demand-side management 

EMS Energy management system 

FD Fault detection 

FMI Functional mock-up interface  

HP Heap pump 

KPI Key performance indicator 

MPC Model-predictive control 

OWL Web ontology language 

RC Resistance-capacitance 

RDF Resource description framework 

RES Renewable energy sources 

SCADA Supervision control and data acquisition 

SH Space heating 

SHM Smart heat meter 

SVR Support vector regression 

SVM Support vector machine 

TES Thermal energy storage 
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Definitions 

Energy performance: definition according to EN 15603:2008 (Official Journal of the EU, 19.4. 2012, p. C 

115/9) and econcept (embodied energy). 

 

Energy source: source from which useful energy can be extracted or recovered either directly or by means 

of a conversion or transformation process. 

 

Energy carrier: substance or phenomenon that can be used to produce mechanical work or heat or to op-

erate chemical or physical processes. 
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1. Introduction 

1.1 General Context 

Buildings are becoming smarter due to the widespread availability of connected devices, sensors, actuators 

and appliances, which can improve the indoor comfort of occupants while reducing total building operational 

costs, energy, and environmental footprint. At the same time, space and water heating contribute to 45% of 

CO2 emissions in the building sector, accounting for 12% of global energy-related CO2 emissions [1]. Space 

cooling, which currently represents only 15% of the energy used for heating [1], along with heating, makes 

up the largest portion of carbon emissions in buildings. Over the next 30 years, building floor areas are 

expected to double by 2070, cooling demand is projected to grow by 3% annually, but heating demand is not 

expected to balance out this increase, thus these energy uses are key targets for interventions aimed at a 

swift and effective transition to zero-carbon energy systems [2]. 

 

District heating and cooling (DHC) systems are recognized as the most sustainable solutions for meeting 

heating and cooling needs in densely populated areas where individual heat pump installations are imprac-

tical [2][3]. It is estimated that district heating (DH) systems supply 9% of the global heating demand in build-

ings and industry [4]. According to the IEA's "Net Zero by 2050" strategy [5], DH is expected to supply over 

20% of the global space heating demand. The district cooling (DC) systems are in the development stage 

delivering around 300 PJ/year globally [6]. Yet, they are gaining the interest of the international community 

since the impact of climate change on global warming is now clearly visible, and the cooling demand in-

creases even in heating-dominated locations, e.g., Austria, the Netherlands, Poland, and Canada. Addition-

ally, the European Union has raised its CO2 emissions reduction target for 2030 from 40% to 55%. The EU's 

"Fit-for-55" proposal aims to achieve this goal through enhanced energy efficiency and increased reliance on 

renewables. As a result of these international targets, both the DHC and electrical power sectors are under-

going significant transformations, striving to eliminate fossil fuels and boost the share of renewable energy 

sources (RES). 

 

The planned decarbonization of the energy system necessitates a revolution across all energy sectors and 

a shift towards smart energy systems, markets, and social restructuring [7][8][9][10]. A high integration of 

RES, such as geothermal, solar, and wind energy, either directly at DHC production units or indirectly through 

the electricity grid via large-scale heat pumps (HPs), may result in fluctuating heat production [11]. Conse-

quently, DHC systems could play a critical role in buffering energy system intermittency. However, this vari-

ability presents additional challenges in DHC system operation and planning, increasing the need for long- 

and short-term energy storage and flexibility and, thus, interoperability between the existing and new com-

ponents and functionalities located at the production and demand sides. Thus, DH systems are undergoing 

major changes to meet decarbonization goals and manage intermittent heat supplies to ensure consistent 

heat availability while stable operation and cost-optimal performance. 

 

Thermal energy storages (TESs) offer a promising solution to enhance the controllability of DHC systems 

during short- and long-term operational challenges [12][13]. According to [14], TES in DHC systems can be 

classified by a) physical phenomenon: sensible, latent, and chemical; b) storage duration: short-term and 

long-term; c) location: distributed/decentralized and localized/centralized; and d) transportability: fixed and 

mobile. TES can be integrated into the production unit or strategically placed within the distribution network, 

centrally controlled by DHC operators. Water circulating in DHC network pipelines has also been explored 

as a source of thermal storage or driven in a decentralized manner via broadcasted incentive signals [15][16]. 

These TES solutions involve actions and investments on the primary side. 
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At the same time, every building connected to the DHC network can be seen as a decentralized TES solutions 

with characteristics fluctuating according to the heat demand profile of the building. The main concept behind 

utilizing buildings for energy storage is that for a specific time, the heat supply to the building exceeds current 

demand, with the stored heat used later [17]. This concept, known as energy-flexible building or demand 

response (DR), has been studied by international experts for over a decade, focusing on initial concept def-

inition, formulation, simulation studies [18], general discussions on applications and challenges [19][20], and 

extensive reviews of evaluation metrics [21]. However, these studies are mostly academic, with generic def-

initions and evaluation metrics applied across different scopes, mainly in the electricity sector, without ac-

counting for hydronics in thermal DHC systems. Despite its potential, large-scale implementation of demand 

response and utilisation of buildings for energy storage in DHC systems has not yet materialised, as utilities 

are hesitant to adopt it in daily operations. Integrating solutions for flexibility activation and control into existing 

DHC systems and building heating installations while ensuring customer satisfaction, economic viability, in-

teroperability and regulatory compliance is a complex task that requires collaboration among various stake-

holders with sometimes conflicting goals. These challenges limit the large-scale adoption of the demand 

response concept in DHC systems. 

 

The overarching goal of IEA EBC Annex 84 “Demand Management of Buildings in Thermal Networks” is to 

develop comprehensive knowledge used as guidelines for the successful activation of the DR in DHC sys-

tems. The work of IEA EBC Annex 84 explores both the social and technical challenges and how they can 

be overcome, as well as how digitalization of the demand side (e.g., smart meters, sensors, monitoring 

equipment) can further facilitate large-scale DR utilization with the minimum investments. 

 

To fulfil the aim the following specific objectives were defined for IEA EBC Annex 84: 

• Provide knowledge on partners/actors involved in the energy chain and on collaboration models/instru-

ments for successful demand management. 

• Classify, evaluate and provide design solutions for new and existing building heating and cooling instal-

lations for successful demand management in various DHC networks.  

• Develop methods and tools to utilize data from energy and IEQ monitoring equipment for real-time data 

modelling of thermal demand response potential in buildings and urban districts.  

• Disseminate lessons learned from case studies collected by the Annex. 

 

To address these objectives, the research and development work in the Annex is divided into four sub-tasks, 

each of which is further divided into several specific work items (see Figure 1 below). 

Figure 1: Structure of the IEA EBC Annex 84. 

Subtask A: Collaboration Models  

It investigates the motivations, challenges and limitations of key actors involved in DR. It reviews existing 

terminology and indicators describing the DR concept followed by the development of a common language 
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understandable for all involved actors. It reviews the existing collaboration models and provides recommen-

dations for the commercial utilisation of the DR concept by DHC utilities in the case studies in Subtask D. 

 

Subtask B: Technology at Building Level  

It investigates the technological options integrated at the building level to enable DR. Special attention is 

given to the evaluation of their ability to maintain the thermal and DHW comfort demands of the end-users 

while reacting to the DHC signals, to their market readiness level, and to their economic and adaptation 

potential in different generations of DHC systems. 

 

Subtask C: Methods and Tools  

It develops new data-driven algorithms for modelling the smart thermal operation of individual buildings and 

for aggregation, orchestration and feasibility studies of individual smart buildings in urban DHC systems and 

techno-economic system-wide optimization of DHC systems. 

It provides an overview of state-of-the-art methods, frameworks, software, numerical tools and algorithms 

relevant to smart thermal management of individual buildings and building clusters connected to district heat-

ing and cooling networks. It covers aspects such as dynamic modelling, large data treatment and analysis, 

techno-economic optimization, fault detection and orchestration of the smart thermal operation and demand 

response of buildings integrated into thermal grids. 

 

Subtask D: Case studies  

It reviews the existing real-life and virtual buildings or cluster of buildings delivering thermal storage to DHC 

systems and thereby being demand-response-ready. The investigation includes the applied technological 

solutions, control strategies, collaboration agreements between DHC utilities and the customers, and finally 

the motivation of the actors to initiate the DR action. 

 

Finally, to address the topic comprehensively and uniformly the Annex 84 has adopted the terminology, which 

is technology agnostic and presented in Figure 2. 

 

Figure 2: Terminology applied in IEA EBC Annex 84. 

Combining the two action and control types there can be four different demand response types: 1) Direct 

Automated (e.g. model predictive control in the building executing a forecast of the DHC grid operator), it is 

characterised by high & high reliability; 2) Indirect Automated (e.g. model predictive control in the building 
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reacting to the DHC broadcasted signal), it is characterised by low & high reliability; 3) Direct Manual (e.g. 

DHC operator vising the house or sitting in the control room and pressing the button), it is characterised by 

high & low reliability; 4) Indirect Manual (e.g. end users changing the settings physically of via using the 

remote technology (walking in the house, sitting on the sofa and using app)  as the reaction to the broad-

casted signal), it is characterised by low & low reliability. Figure 3 is presenting the visualisation of the four 

DR types. 

 

 

 

 

 

 

 

Figure 3. Illustration of the four type of DR according to Annex 84. 

Finally, the direct and indirect action types proposed by Annex 84 are preferable DR mechanisms employed 

by the DHC operators; they indicate the level of operator involvement in the DR programme. From the cus-

tomers’ perspective, i.e., a more sociological viewpoint, these action types can be classified as explicit or 

implicit DR mechanisms. In the explicit DR, the customers receive a direct payment from the DHC utility for 

shifting their demand as part of the DR programme. In implicit DR, various incentives, e.g., price or CO2 

signals, are used to encourage customers to modulate their demand. 

 

1.2 Challenges and Opportunities for Demand Response in District 
Heating and Cooling Networks 

The urgent need to decarbonise energy grids and transition away from fossil fuels toward RES to mitigate 

climate change, improve energy supply security, reduce pollution and address sustainability challenges re-

quires an important paradigm shift for the largest energy end-user: the building sector. Previously considered 

as immutable and non-responsive loads, buildings are now becoming more and more energy-efficient, with 

decentralised energy production and storage assets (prosumers), operating sector coupling between the 

different energy grids, and capable of adapting their short-term energy demand profile to provide building-to-

grid (B2G) services and help to match the energy demand with the intermittent energy supply from RES (see 

Figure 4). 
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Figure 4. The emergence of a paradigm shift with energy-efficient smart building prosumers providing B2G 

services to optimise the operation of smart energy grids [22]. 

DHC systems stand out as a key technology for achieving greenhouse gas emission reduction targets by 

enhancing energy efficiency and increasing the share of RES. However, this relies on the transformation of 

current DHC networks into 4th- or 5th-generation DHC with a low-temperature supply for heating grids and a 

relatively high-temperature supply for cooling grids. 

The shift to 4th generation DHC not only facilitates integration with other energy sectors (sector coupling) 

and low-grade RES, but it also enables synergies by harvesting, leveraging and upcycling various local 

sources of industrial heat surplus. 

However, DHC systems face several challenges: the need to reduce the usage or and phase out CO2-

intensive district heating and cooling plants, eliminate peak power and flow limitation at local bottlenecks in 

energy networks, lower costly needs for reinforcement and extension of energy infrastructures and prevent 

the deterioration of hydronic networks caused by the unstable operation. 

The building stock possesses tremendous potential for energy storage in its different distributed storage 

systems (hot water tanks, electrical batteries, schedulable appliances, electric vehicles), but also in the ther-

mal mass of the indoor space and construction elements [23]. This energy storage potential can be employed 

to provide B2G services (in the form of demand response and building energy flexibility strategies) that can 

alleviate the aforementioned challenges of future thermal grids with large shares of RES. 

However, orchestrating the energy flexibility assets of smart buildings and smart energy communities re-

quires a new class of numerical modelling tools for planning, designing, controlling and operating such com-

plex systems. In addition, the continuous digitalisation of the building stock plays a major role in unlocking 

the various B2G service opportunities needed to achieve sustainable thermal grids. Moreover, the large 

amount of data generated by the building stock can also be leveraged for the optimisation of building sys-

tems: e.g., the automated fault detection and diagnosis of district heating and cooling substations, distribution 

networks and heating/cooling building emitters [24]. Big-data analysis can also provide crucial insights on 

energy-related occupant behaviour to optimize smart home and smart building automation and building ser-

vices, but also nudge highly-inefficient energy-related behaviours or provide tailored tariff structures for de-

mand response programs [25]. All these data-driven smart building applications can only develop their full 

potential if interoperable data management systems using ontologies and semantic principles are deployed 

and maintained to ensure reliable data quality and alleviate cybersecurity risks. 
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2. Modelling Demand Response and Smart 

Thermal Operation of Buildings 

2.1 Current Landscape of Available Tools 

The current commercial simulation tools used by engineering and utility companies for the design, sizing, 

large-scale planning, and operation of DHC networks are typically unsuitable for integrating B2G services in 

the form of building demand response and energy flexibility strategies. Indeed, the former usually lack the 

required time and spatial resolution, the fully dynamic modelling of the building’s indoor environment, the 

capacity to implement advanced control schemas, or the possibility to be coupled (co-simulation) with other 

building energy modelling tools. These DHC network simulation tools only account for building as pre-calcu-

lated demand profiles which cannot change the latter based on an external incentive signal or an advanced 

predictive controller. Most of the time, this limitation cannot be mitigated easily as these tools do not integrate 

interoperability mechanisms such as the Functional Mock-up Interface (FMI) framework [26]. 

More advanced and versatile DHC modelling tools exist, such as TRNSYS [27], Modelica (with specialized 

modelling libraries for buildings and DHC systems [28][29][30][31][32]), SIM-VICUS [33], IDA Districts [34], 

DIMOSIM [35], CitySim [36][37], APROS [38] or DistrictLab-H [39]. They allow for the dynamic thermo-hy-

draulic modelling of complex thermal networks with high temporal resolutions (usually down to the minute or 

second) and can be coupled to other simulation platforms via, most of the time, the FMI standard [26]. Re-

cently, a number of network-only non-commercial open modelling tools developed with Python have been 

released, such as Pandapipes [40], PyDHN [41] and GridPenguin [42]. 

On the building and indoor environment modelling side, the bottom-up approach for the detailed dynamic 

modelling of single buildings and small clusters of buildings is often performed with white-box model tools, 

such as EnergyPlus [43], TRNSYS [27], IDA ICE [44], SIM-VICUS [33], IES.VE [45] or PLEIADES/COMFIE 

[46]. Although very accurate, white-box models are usually computationally heavy. Therefore, for the simu-

lation of larger building clusters (or for optimization applications), simpler models (fewer input variables and 

model parameters) are usually employed. For instance, Modelica libraries [28][29][30][31][32] and CTSM-R 

[47] support the creation of Resistance-Capacitance (RC) network-based grey-box models that can be run 

with minimum computation burden. In addition, statistical modelling- and machine learning-based black-box 

approaches have gained popularity within the building energy modelling (BEM) community because of ac-

cessible libraries/packages on popular programming languages (often Python) to generate and calibrate re-

gression models, tree-based models, support vector machines, or artificial neural networks: e.g., scikit-learn 

[48], and pymodconn [49][50]. 

Furthermore, multi-domain simulation tools, such as Modelica, SIM-VICUS, TRNSYS, or CitySim can handle 

both the thermodynamics of multiple buildings and thermal networks at the same time. These integrated tools 

do not require coupling and co-simulation frameworks, which can ease the study of DHC with demand re-

sponse strategies. For instance, CitySim has been used to study the impact of DH substation’s control strat-

egies with variable building heat demand profiles to evaluate the mass flow needed in the pipes for a pre-

defined temperature difference at the heat exchangers. If the demand of a building is not met, for instance, 

due to a too low distribution temperature, the insufficient supply to the building impacts the indoor operative 

temperature and/or the domestic hot water production temperature. Vice-versa, if the heat demand from 

buildings is reduced at specific periods of the day, the impact on the thermal network is properly accounted 

for. In that way, the impact of different demand response control logics and DHC configurations can be eval-

uated on a large scale. Future development directions in the CitySim tool include using Machine Learning to 
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reproduce the physical behaviour of the DHC with a low computational burden to run optimization schemes 

for demand response controllers in large building clusters [36]. 

 

2.2 Modelling Approaches 

White-box models require comprehensive knowledge of the system’s internal mechanisms, including all gov-

erning equations and parameters. For buildings and DHC network simulations, white-box models allow for 

high-fidelity representation of system behaviour under varying boundary conditions and can integrate all 

types of energy systems, energy storages, and advanced controllers. They provide detailed insights into 

system dynamics, enabling engineers to accurately predict performance across different design scenarios. 

This facilitates the development of precise control strategies and aids in optimising system components for 

maximum efficiency. However, as white-box models rely on a detailed knowledge of the system’s character-

istics, they often require the user to make assumptions about unknown parameters that can have a significant 

impact on the simulation results. Furthermore, when a high level of detail in the system’s components is 

used, white-box models’ complexity can grow beyond the solver’s capability, leading to poor scaling to larger 

systems. The simulation of hundreds or thousands of buildings in the same model with this white-box mod-

elling approach is thus often impossible in terms of computation time and stability. 

Grey-box models on the other hand, such as those available in Modelica or CTSM-R, can alleviate the limi-

tations of white-box models by combining theoretical physical understanding with empirical data. They 

acknowledge that while some aspects of the system are well-understood, others are too complex or uncertain 

to model solely from first principles. Grey-box models achieve a balance between model complexity and 

computational efficiency. They can adapt to real-time data, improving prediction accuracy and offering en-

hanced flexibility in modelling components with partially known behaviours. In building and DHC optimisation, 

grey-box models are valuable for efficiently simulating system performance by incorporating theoretical 

knowledge and operational data, thus improving decision-making and operational strategies. Lumped RC 

networks the most common type of grey-box model to simulate the thermodynamics of buildings. They are 

widely employed for model-predictive control (MPC) applications in buildings [51]. 

As a relatively recent trend, black-box models rely exclusively on input-output data without any assumptions 

about the system's internal workings. They employ statistical or machine learning techniques to model sys-

tem behaviour based solely on observed data. This approach has the advantages of rapid development using 

historical operational data and adaptability to complex, nonlinear system behaviours with uncertainty around 

the system’s characteristics. Black-box models offer high flexibility in terms of what inputs can be used and 

which outputs should be estimated, as long as the necessary data is available or can be produced by physics-

based simulations. However, the validity of the generated black-box models is limited to the specific use and 

problem space they were designed to consider: the particular case study characteristics and relative condi-

tions on which the data was available. In other words, they typically sacrifice flexibility and generalisability 

but offer significant advantages in computational efficiency and a high degree of specialization, potentially 

reducing the reliance on design assumption of the modelled system. Furthermore, black-box models can 

require the development of specific scripts to interface with other tools, which can hinder integration. Cur-

rently, black-box models are predominantly implemented using Python-based frameworks, such as Scikit-

learn [48] (random-forest, gradient-boosting, support vector machine, linear regression models), PyTorch 

[52] and Tensorflow/Keras [49][53] (deep learning and deep neural network), mainly because of its mature 

ecosystem for developing data-driven applications. 

In DHC systems, black-box models are mostly used to predict energy demand, detect anomalies, and opti-

mise operations through data-driven insights, especially when physical models are infeasible or too 
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cumbersome to implement. Few attempts at using them as surrogate models for a more detailed simulation 

of the system have been recently made with promising results and a significant reduction of computational 

time, however more work in this direction is needed to assess their suitability for complex cases. In practice, 

a significant challenge with black-box models lies in the difficulty for the end-users to navigate the landscape 

of available possibilities for a specific use-case, especially since most comparative studies have been carried 

out on limited and proprietary data. Reliable and generalised benchmarks are not available yet. 

A few tools are available for multi-domain modelling of both the building thermodynamics and the thermal 

networks. They typically employ a white-box or grey-box approach. Aside from general purpose modelling 

frameworks such as TRNSYS, Modelica and MATLAB, IDA District (coupled with IDA ICE), CitySim, City 

Energy Analyst [54], ESP-r [55], DIMOSIM and SIM-VICUS are suitable for the study of demand response 

control strategies of building clusters connected to DHC networks. 

 

Figure 5. Distribution of modelling approaches in scientific studies on energy and buildings [56]. 

Finally, different modelling tools can be coupled via a co-simulation framework. For instance, Urban Opt [57] 

enables the coupling of EnergyPlus and Modelica; and BCVTB platform (Ptolemy II) is capable of coupling 

EnergyPlus with MATLAB-Simulink, Ansys and Python using FMI [58]. Another approach is to use general-

purpose programming languages (typically Python or MATLAB) to manage the interfacing between two or 

more single-domain modelling tools. Nonetheless, the coupling of different modelling tools can be challenging 

and present a steep learning curve. Several researchers attempting to carry out co-simulation have reported 

difficulties to find adequate documentation, and have faced several issues such as computation instabilities, 

data flow corruption, or simulation desynchronization. 
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2.3 Outlook and Perspectives 

Several key improvements are necessary to improve the suitability of simulation tools for demand response 

in buildings connected to district heating and cooling DHC networks. Addressing the primary challenges 

reported by users should be a priority to ensure accurate and efficient simulations. 

Co-simulation, which integrates multiple modeling tools, remains particularly complex, requiring significant 

programming expertise and a steep learning curve. Limited interoperability and inconsistent workflows hinder 

seamless tool integration, necessitating improved compatibility and streamlined processes. Incomplete doc-

umentation further complicates tool coupling, emphasizing the need for comprehensive guides to facilitate 

smoother adoption. Additionally, frequent errors and inconsistencies (e.g., corrupted data flow in between 

models, misalignment of data sampling, and solver instability) require thorough testing, resolution, and clear 

documentation to support engineers and practitioners. 

Scalability poses another major challenge, particularly for large-scale dynamic simulations involving clusters 

of hundreds or thousands of buildings. Each building's local control optimizers, stochastic occupancy pat-

terns, and interactions with multi-energy systems introduce additional complexity. Currently, methodologies 

for modeling smart thermal operations in such large clusters are underdeveloped, making widespread adop-

tion difficult for the building and energy industry. 

To advance simulation tools for DHC networks, efforts should focus on improving interoperability, simplifying 

co-simulation frameworks, enhancing documentation, and addressing scalability issues. These improve-

ments will be critical for developing more robust demand response strategies and optimizing energy-efficient 

DHC systems with a large share of intermittent RES supply. 
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3. Digital Twin Tools for District Heating 

and Cooling Networks in Future Smart Cit-

ies Performing Demand Response 

3.1 The Role of Digital Twins in Building Demand Response 

The rapid transformation of energy systems in response to climate change, the need for decarbonization, 

and the ever-increasing share of RES require innovative tools for managing and optimizing energy supply, 

distribution and use in DHC systems. In this context, digital twin technologies emerge as a key enabler, 

providing a virtual replica of physical assets to model, continuously re-calibrate, simulate, and optimize op-

eration in real time. Digital twins are particularly suited for addressing the complexities of integrating distrib-

uted RES and unlocking the energy flexibility potential of smart buildings [59]. 

Digital twins serve as sophisticated computational models with a two-way communication that mirror the 

physical, operational, and functional aspects of systems in real time. For DHC networks, they enable predic-

tive demand management by integrating data from sensors, weather forecasts, and building energy man-

agement systems. This facilitates the anticipation of variations in demand and supply, optimization of energy 

flows, and proactive decision-making. As DHC networks transition to 4th and 5th generation systems, digital 

twins play a critical role in ensuring seamless integration of decentralized renewable sources, energy storage, 

and sector coupling with electricity grids [59][60]. 

Moreover, digital twins advance the real-time optimization of DHC operations by simulating various scenar-

ios, identifying inefficiencies, and recommending adjustments. Digital twins also enable buildings to partici-

pate actively in demand response programs by simulating their behavior as thermal storage assets and op-

timizing the use of distributed supply units such as heat pumps and hot water tanks [60]. By bridging the 

physical and digital domains, they provide the predictive, integrative, and optimization capabilities necessary 

for smart cities. The adoption of digital twins is not just a technological innovation but a strategic imperative 

for achieving sustainable, resilient, and efficient energy systems. 

 

3.2 Digital Twin Tools for Thermal Networks 

Future DHC systems will integrate diverse energy sources and storage options, creating multi-directional 

energy flows that require a holistic system-wide perspective. Digital twins provide this capability by continu-

ously updating models with live data from sensors and IoT devices [59]. 

The application of digital twins in DHC networks relies on advanced modeling tools, data analytics, and in-

teroperability frameworks. These tools enable detailed thermal modeling to predict heat and mass flows 

within DHC networks, accounting for fluctuating demand patterns and renewable energy inputs. The models 

at the core of digital twins can be multi-domain simulation tools, such as Modelica or TRNSYS, or leverage 

co-simulation frameworks, such as FMI, to couple several domain-specific tools for buildings, electricity, gas, 

and thermal grids, ensuring comprehensive sectoral integration [60]. The use of standardized interoperability 

frameworks improves the scalability of digital twins as they can integrate various modeling and simulation 

environments for diverse applications. Machine learning and AI method integration further enhance the 
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predictive capabilities of digital twins by identifying patterns in historical and real-time data, enabling accurate 

demand forecasts and adaptive control strategies. 

STORM (Simulation Tool for Operating Regimes in District Heating) is an example of the successful imple-

mentation of a digital twin for optimizing the operation of a thermal network. This tool, developed by VITO/En-

ergyVille (Belgium), can evaluate different operational regimes (e.g., constant supply temperature, variable 

supply temperature), simulate heat distribution in the network, and determine the most efficient operating 

strategy. It also supports the integration and optimization of RES within DH systems, and can forecast heat 

demand based on historical data, weather conditions, and other relevant factors. The economic analysis 

module enables to maintain cost-efficient operations while minimizing the environmental impact of district 

heating systems, including CO2 emissions and other pollutants. The demand response management module 

of STORM employs self-learning algorithms to modify the daily demand profiles of the building portfolio and 

achieve peak reduction, fossil fuel use and emission reduction (the thermal mass of the building is used as 

a thermal storage to reduce peak demand). The smart controller takes into account the energy storage ca-

pacity of the buildings’ thermal mass, and the fluctuating electricity market [61]. 
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4. Large-Scale Statistical Analysis of 

Smart Heat Meter Data from Clusters of 

Buildings Connected to District Heating 

Networks 

Smart Heat Meters (SHMs) provide data on the heat energy usage of buildings with an unprecedented tem-

poral resolution, thereby offering information that was previously unavailable. This capability facilitates a 

deeper understanding of the energy demand of buildings, which is crucial for the efficient operation of DHC 

networks and for implementing advanced control strategies such as demand response. Using SHM data 

often requires pre-processing steps to address issues such as missing data and the low resolution of com-

monly recorded integer kWh values. Disaggregation techniques have been developed to separate the total 

energy recorded by SHMs into energy for space heating (SH) and domestic hot water (DHW). Detailed 

knowledge about SH and DHW demand profiles can provide vital insights for district heating utility companies 

to implement advanced control strategies or automated fault detection and diagnosis (AFDD) methods [62]. 

Moreover, SHM data can be combined with Building and Socio-Economic Characteristics (BSECs) to gain 

insight into the factors driving energy demand and differentiation among buildings. 

4.1 Data Pre-Processing 

Pre-processing is an essential step when using smart meter data in general. Particular research focus has 

been on the imputation of missing data with methods ranging from simple moving averages [63] over meth-

ods based on finding similar days and copying data [64] to advanced autoencoder-based methods treating 

the time series as 2D picture-like information [65]. 

An aspect that has received considerably less attention is the artificially reduced resolution of the transmitted 

data from SHMs. The cumulative energy data is commonly rounded down to kilowatt integer values to fit with 

existing infrastructure at utility companies and reduce bandwidth when transmitting data. This introduces a 

considerable loss of information for fine granularity, such as in single-family dwellings [66].To overcome this 

problem for hourly data, Schaffer et al. (2023) proposed a framework (see Figure 2) that first applies smooth-

ing using a moving average with linear weighting and a centered window with a length of 5 values. The 

smoothed values are then adjusted using the known maximum point-wise deviation and the assumption that, 

over one day, the same energy must be used [66]. 
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Figure 6. Framework proposed by Schaffer et al. (2023) to mitigate the issues introduced by the low trans-

mitted resolution of SHMs [66]. 

Next to this established method, potential inspiration for future research could be drawn from the super-

resolution methods, which aim at producing high-frequency data from low-frequency data, for which an ex-

tensive overview of their application on smart electricity meter data was given in Iversen et al. (2023) [67]. 

 

4.2 Disaggregation of Total Energy Demand Profiles 

Disaggregating the total energy recorded by SHMs into SH and DHW is an important aspect, considering 

that these end-uses have different driving factors. Considerable research has been dedicated to disaggre-

gating SHM data, acknowledging its importance. However, only a few studies use data with an hourly reso-

lution rounded down to kilowatt hours and are thus applicable to most of the data collected by current com-

mercial SHMs. 

Hedegaard et al. (2020) [68] used a grey box model (5R2C) along with a switching model with 24-hour 

tapping to simulate DHW usage. The models were fitted to the data using a Bayesian calibration framework 

and evaluated using hourly data from 44 terraced houses. Their findings indicated that their method slightly 

overestimated DHW demand by approximately 0.5 kWh per day. Furthermore, their DHW model produced 

more accurate results than estimating DHW solely based on the summer period without SH. The latter 

method resulted in an underestimation of around 1 kWh per day. 

The idea of training a regression model based on hours with only SH and predicting SH for all hours with 

potential DHW usage was proposed by Leiria et al. (2023) [69]. Evaluating five different approaches to iden-

tify SH-only values and five different prediction methods, they found that assuming the 17 lowest daily values 

were due to SH only led to the most accurate identification. At the same time, a Kalman filter combined with 

Support Vector Regression (SVR) gave the best prediction performance. Using this method, Leiria et al. 

(2022) [70] demonstrated that the performance significantly decreases if applied to SHM data that is rounded 

down to kilowatt values. However, this decrease in performance can be reduced if the above-mentioned 

approach developed by Schaffer et al. (2023) [66] is applied to the data beforehand. 

Schaffer et al. (2024) [71] further investigated this idea with a focus on making it applicable to city-scale data. 

They found that data from smart water meters can help identify DHW hours. Additionally, they showed that 

a random forest can serve as a computationally efficient regression model without the need for hyperparam-

eter optimization, outperforming the previously used SVR while being computationally more efficient. Fur-

thermore, they demonstrated that using features different from those previously employed (specifically, the 

1-hour and 2-hour lagged and leading energy use values plus cyclical encoded temporal information) en-

hanced the regression model's performance. 
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4.3 Smart Heat Meter Data Combined with Building and Socio-Eco-
nomic Characteristics 

Most approaches aimed at using SHM data combined with BSECs to gain more insight are based on a two-

step process: first, clustering the data and second, using a classification algorithm to analyse BSECs as 

differentiating factors. 

Gianniou et al. (2018) [72] used k-means clustering with KSC-distance to establish daily clusters from hourly 

SHM data from approximately 8300 single-family houses in Denmark, with a data duration of up to 81 months. 

Each day was considered independently, resulting in a building having daily profiles from several clusters. 

After identifying five daily energy use clusters, they used a logit regression model with five BSECs: building 

area and age, number of registered adults, number of teenagers and number of children to identify their 

influence on the likelihood of a building belonging to a cluster. Their results showed that building area, age, 

and the number of teenagers were statistically significant factors. 

Carmo & Christensen (2016) [73] adopted a two-stage clustering approach to address seasonal variations.  

First, they clustered the daily profiles of each building into three categories (high, medium, low) and then 

clustered these groups across all buildings. They used k-means clustering on SH and DHW data from 139 

heat pump-equipped dwellings in Denmark, mimicking data from SHMs. To analyse the differentiating factors 

for the two identified clusters, they used a logistic regression model with 15 BSECs. Their results showed 

that building area and year of construction, type of space heating distribution system, number of children and 

teenagers, and postcode were significant factors. 

Schaffer et al. (2024) [74] used a co-clustering approach originally developed for smart electricity meters.  

This approach considers seasonal variation (time) as a feature, allowing the creation of co-clusters in a 

chessboard-like structure. Each building cluster shares the same time clusters, facilitating interpretation while 

incorporating seasonal variation into the clustering process. They applied this approach to two years of SHM 

data from nearly 5000 single-family houses in Aalborg Municipality, Denmark, creating six building clusters. 

They analysed 26 building characteristics and compared two multi-class classification and variable selection 

approaches. Overall, both approaches showed low performance (Matthew's correlation coefficient MCC of 

about 0.3). However, the variable selection approach based on Random Forests resulted in fewer selected 

variables while maintaining similar performance compared to multinomial logistic regression fitted with 

grouped lasso. They also found that the year of construction and, if applicable, the year of renovation of the 

buildings resulted in similar classification performance as detailed information such as transmission losses 

and information about the ventilation system. By merging the six clusters into three, based on similarities and 

domain knowledge, they improved classification performance (MCC of about 0.5) while retaining the overall 

selected information. 

Extending this work, Schaffer et al. (2023) [75] investigated eight additional socio-economic characteristics 

using the variable selection approach based on random forest models. They found that when socio-economic 

information was combined with building information, the socio-economic variables were never selected. Fur-

thermore, when used alone, socio-economic information resulted in poor classification performance (MCC of 

around 0.1). 

Hansen et al. (2022) [76] used a different approach to investigate socio-economic household variation in 

heating use patterns based on SHM data. Rather than starting from the clustering of heating consumption 

data, they initially group households into occupational groups (blue-collar, white-collar, pensioner, and un-

employed), demographic groups (child in household and age), and disposable income (six different groups). 

Using these categorizations, they compared daily heating load profiles for the various household groups. 

This is supplemented by models of household variation in the morning (5:00–9:00) and evening peaks 

(17:00–20:00). In this way, the study demonstrates an approach that focuses directly on the peak hours 
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rather than various clusters reflecting shared patterns of the heating load. The study shows that higher-

income households tend to consume more during the evening peak. The groups with at least one blue-collar 

worker or unemployed households tend to use less heat during the morning peak. However, the study reveals 

only minor differences across groups, which suggests that institutional rhythms, like working hours or school 

schedules, are the strongest structuring parameters of the daily load patterns in dwellings. 
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5. Data-driven Automated Fault Detection 

and Diagnosis for District Heating Network 

Consumers 

The development and optimal orchestration of multiple energy flexibility assets connected to district heating 

networks (DHN) require that, in the first place, the hydronic components in the buildings operate as intended. 

However, this is far from being the case in most thermal grids, as studies estimate that approximately 74% 

of the buildings connected to the DHN have faults in their substation [77]. An interview and survey study on 

56 Swedish DH utilities showed that faults in heat exchangers, control systems, customer’s internal heating 

systems and control valves are common [78]. It is thus crucial to continuously detect and address the multiple 

faults that can be found in the systems of the building end-users to maximise the benefits of demand re-

sponse strategies in thermal grids. The current section gives an overview of the current state of the art on 

(automated) fault detection and diagnosis for hydronic systems of buildings connected to thermal grids. 

In DHNs, the return temperature of the heat-carrier fluid plays a key role in maintaining the overall efficiency 

and sustainability of the network, as it directly affects the heat losses in the thermal grid, system stability, and 

the longevity of infrastructure components [79]. Lower return temperatures indicate efficient heat transfer at 

the end-users, which enhances the energy efficiency of the entire system. Conversely, a higher return tem-

perature (i.e., a small temperature difference between the supply and return temperature of the heat-carrier 

fluid) often indicates inefficiencies and potential faults within the building heating systems, leading to in-

creased operational costs for the DHN [80][81]. As a result, monitoring and managing the return temperature 

(combined with other measured variables such as heat usage and fluid flow) is crucial for DHN utilities. 

To encourage DHN consumers to maintain their return temperature at optimal levels, DHN utility companies 

may impose additional fees on those with a consistently high return temperature. This serves as an incentive 

for customers to adjust their usage patterns or address the faults within their heating systems that induce 

high return temperatures [82][83]. However, recent research suggests that utilities might benefit from recon-

sidering their business model, shifting towards offering continuous monitoring services to proactively detect, 

diagnose, and resolve these faults [83][84]. By fostering a closer relationship between utilities and their cus-

tomers, this approach could provide them greater access to building heat substations and secondary heating 

systems, facilitating a deeper understanding of potential faults and improving overall system performance. 

Over the last few years, the systematic deployment of SHM in buildings has enabled continuous heat moni-

toring and thus unlocks new services such as fault detection (FD) in the DHN systems. FD can be performed 

by finding anomalies in the recorded operational data. This anomaly detection process has been investigated 

and applied heavily in DHNs, as it does not require apriori information about the consumers, but only employs 

a data-driven algorithm that allows categorization of data points as normal or abnormal. In van Dreven et al. 

(2023) [85], the FD methodologies are classified into three groups: Data mining and knowledge discovery 

(DMKD), outlier detection, and leakage detection. DMKD refers to techniques for discovering concealed in-

sights that could be valuable for FD, while outlier detection consists in identifying irregularities in the meas-

urements. Lastly, leakage detection focus on spotting data anomalies specifically caused by leakage in net-

works [85]. 

On the other hand, fault diagnosis in DHN systems is a more difficult process to set up. Nonetheless, it plays 

an essential role in ensuring the reliability and efficiency of the heating grid by identifying the root causes of 

system malfunctions or inefficiencies. In DHN systems, faults can arise from a variety of sources, such as 

sensor failures, equipment degradation, incorrect heat distribution, or network leaks. Data-driven fault 
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diagnosis leverages the vast amounts of data collected by SHM with machine learning techniques to auto-

matically detect and diagnose irregularities in the system performance and classify these into appropriate 

fault categories. This enables a faster and more efficient fault-handling response, often addressing these 

issues before they escalate into major failures. The integration of these methods supports predictive mainte-

nance strategies, reducing downtime and prolonging the lifespan of critical infrastructures, thus improving 

the resilience and cost-effectiveness of DHNs. However, contrary to FD, fault diagnosis requires a priori 

understanding of the system where the SHM is located. Therefore, this topic is much less studied in the 

current scientific literature. Table 1 below gives an overview of the current scientific literature regarding fault 

detection and fault diagnosis in the DHN sector (the denomination of the different terms is taken from van 

Dreven et al., 2023 [85]). 

Table 1. Overview of the current scientific literature on fault detection and fault diagnosis for DHN. 

Category Topic Number of publications 

Fault detection DMKD/Clustering 16 

Outlier detection 20 

Leakage detection 9 

Fault diagnosis Sensor failure 4 

Fouling 2 

Valves 2 

Pipes 3 

Multi-label 9 

The geographical distribution of the reviewed studies on FDD for DHNs is presented in Figure 7 and Figure 

8 (based on the affiliated institution of the first authors). One can observe that, naturally, countries with more 

extensive research on AFDD tend to be those with a higher proportion of buildings connected to district 

heating systems (e.g., Sweden and Denmark). However, there are notable exceptions with significant district 

heating coverage but very little to no scientific publication on AFDD for DHNs, such as Lithuania. This can 

be explained by the fact that AFDD requires available DHN data and resources to curate datasets, and test 

and develop AFDD algorithms. 
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Figure 7. Geographical distribution of the reviewed studies on FDD for DHNs. 

 

Figure 8. Geographical distribution of the reviewed studies on FDD for DHNs in Europe. 

Figure 9 presents the distribution of scientific publications on AFDD per country and over the years. One can 

observe that Sweden is the leading contributor, followed by China and Denmark. Historically, fault detection 

is more prevalent in the literature, with a recent increase in papers about fault diagnosis. 
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Figure 9. Distribution of scientific publications on AFDD per country and over the years. 

A key factor contributing to the rise in research on this topic, particularly in fault diagnosis, is the increased 

availability of data from the rapid deployment of SHM on the demand side. This growth in data collection 

helps establish clear links between fault symptoms and under-performances observed in the SHM data and 

the actual root causes (ground truth) of these anomalies. Having this ground truth is crucial for developing 

AFDD algorithms that can be scaled up by utility companies, supporting their business models, improving 

service to their customers, and promoting the sustainability of DHNs: 

• Energy use and system efficiency optimisation: FDD improves energy efficiency by ensuring that all 

system components are working properly, which reduces energy waste and lowers operating costs. 

• Proactive fault and anomaly detection to lower operating costs: FDD algorithms can identify poten-

tial faults or anomalies at an early stage, enabling operators to address these issues before they escalate 

(predictive/preventive maintenance), thereby avoiding major failures and extending the lifespan of sys-

tem components. FDD thus minimises the need for emergency repairs by facilitating preventive mainte-

nance, which in turn reduces the frequency and severity of repairs, leading to significant cost savings for 

DHN utilities. 

• Reduced downtime and service disruptions: Early FDD enables faster interventions and mainte-

nance, reducing system downtime and interruptions of service, leading to a more reliable heating supply 

and increased customer satisfaction. 

• Improved maintenance prioritisation: By identifying recurring issues, operators can prioritise mainte-

nance tasks more effectively, ensuring that the most critical problems are addressed first and optimising 

resource management. 

While the benefits of incorporating AFDD into DHN systems are clear, the path to implementation presents 

certain challenges that need to be addressed [62][86][87]: 
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• Reliance on expert evaluations and dataset limitations: Acquiring sufficient data for fault diagnosis 

often depends heavily on expert analysis, which can result in ambiguous fault labels and the potential 

for human error, as each case is evaluated individually. 

• Requirement for high-quality ground truth data: In order to leverage machine learning and deep 

learning methods for AFDD in DHNs, a substantial amount of high-quality ground truth data is essential 

to achieve sufficient accuracy. At the moment, the available data with labelled ground truth is insufficient. 

• Data compilation, sharing, and standardisation: District heating companies should prioritise the com-

pilation, anonymisation, and sharing of data to drive advancements in the field. Developing standardised 

datasets through collaborative efforts would enable the validation and comparison of various models on 

consistent benchmarks, thus accelerating progress in AFDD solutions. 

• SHM data resolution: Truncation errors from rounding measurements down to the nearest integer re-

sults drastically reduces the usefulness of this data for FDD purposes. This issue can be alleviated by 

aggregating the data over days. However, detecting certain types of faults requires higher measurement 

resolution and temporal granularity data from the SHM, which can compromise their battery lifespan and 

thus increase their maintenance costs. 

To support the generation of ground truth data, to tackle the lack of structured way to label identified faults 

by the industry, and to facilitate the development of FDD methods for DHN, Manson et al. [86] suggested a 

taxonomy for labeling deviating patterns from  customer data. Figure 10 illustrates this fault handling and 

labelling process. 

 

Figure 10. Illustration of a fault handling and labelling process [86]. 

This approach allows a closed loop between technicians performing interventions on the network and the 

data analyst to improve on the labelling of the data. This standardized framework helps the technician as 

well as the data analyst to better identify and characterize faults and technical interventions (see Figure 11). 
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Figure 11. The structure of the deviation cause taxonomy suggested by Manson et al. [86]. 

An alternative approach to generate training datasets with labeled ground truth on system fault is to emulate 

faults in laboratory setups. For instance, Van Dreven et al. used a test rig to emulate different types of faults 

in the substation of an apartment or house connected to a DHN [88]. The generated data was then used to 

evaluate the performance of machine learning-based models for fault detection and fault diagnosis. For fault 

detection, semi- supervised learning methods one-class Support Vector Machine (SVM) and the isolation 

forests were used. The latter was selected for its ability to isolate anomalies in datasets with unlabeled. For 

fault diagnosis, random forest and SVM models were employed. The test results showed that, in that case, 

the isolation forest and the random forest models were the most accurate for detecting and diagnosing faults 

in DHN substations. 
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6. Model and Data Interoperability 

The orchestration of multiple sub-systems and decentralized flexibility assets, and the scalable deployment 

of smart control, AFDD and analytics solutions require common data structures and inter-comprehensible 

languages or communication protocols. 

Semantic modeling using ontologies is a methodology for creating standardized, machine-readable repre-

sentations of buildings and energy networks. An ontology is a structured framework for representing 

knowledge within a specific domain by defining, organizing, and highlighting relationships among various 

concepts. Ontologies establish a shared language that facilitates seamless interaction between diverse sys-

tems and stakeholders. This is particularly essential in the property sector, where complex systems (such as 

those for energy optimization, ventilation, heating, cooling, and security) must function in harmony. Ontolo-

gies ensure consistent data interpretation throughout a building's lifecycle, supporting applications like intel-

ligent control systems, digital twins, and integration with broader ecosystems, including smart cities. They 

are grounded in the principles of the semantic web and employ standards such as RDF (Resource Descrip-

tion Framework) and OWL (Web Ontology Language) to effectively structure and exchange information. 

In the domain of building energy flexibility, the development and usage of ontologies is fairly recent. In 2022, 

Li & Hong created the semantic ontology EFOnt that is dedicated to the co-development and streamlining 

applications in the building energy flexibility domain [89]. EFOnt synthesizes demand response key perfor-

mance indicators (KPIs) from existing literature and provides standardized definitions, data requirements, 

and calculation procedures for building energy flexibility quantification applications (see illustrative example 

in Figure 12). Moreover, this ontology can be linked with other ontologies that represent various useful 

knowledge domains in the building and energy grid sector. This fosters reusability, interoperability, and se-

mantic integration [90]. 

 

Figure 12. Semantic description of the flexibility factor KPI and its input variables in EFOnt [90]. 

Recent case studies have demonstrated the benefits of leveraging ontologies and semantic principles for the 

scalable deployment of building-to-grid services. For instance, in 2025, de Andrade et al. presented a se-

mantics-driven framework for deploying demand response control applications in real buildings. It enables 

the creation of semantic models based on Brick and SAREF ontologies, integrating metadata from BIM 

(Building information modelling) and building automation systems. This framework can integrate diverse data 
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sources, and execute demand response actuation in the building. Moreover, leveraging BIM data with this 

framework showed a 75% reduction in effort for developing, configuring, and deploying building controls 

compared to existing approaches [91]. 

Further research and development are needed to address the current limitations of BIM representations that 

can fully support data-driven applications in building demand response and optimization of DHN operation. 

This includes developing extensions to existing ontologies or creating new ontologies that can better repre-

sent the complexities of buildings integrated with district heating systems, particularly in the context of nearly 

zero-energy building prosumers. 
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7. Use Cases of Tools and Methods for De-

mand Response in Buildings Connected to 

Thermal Grids 

A total of 30 case studies were analyzed in the Subtask D of the IEA EBC Annex 84, focusing on the inte-

gration of demand-side management in buildings connected to thermal networks. Among these, 7 cases 

explicitly described demand-side management using tools that incorporate numerical models of buildings 

and/or thermal grids. These cases are presented here below. 

Table 2. Overview of relevant case studies using numerical modelling tools for demand response in buildings 

connected to thermal grids (IEA EBC Annex 84 - Subtask D). 

Case 

Study 

Title of Case Study / Research Project Model Type Reference 

1 Peak shaving in Turin district heating (Politecnico di Torino, It-

aly) 

Black Box [92] 

2 Data-driven automated demand-side management technology 

(Project “DataDrivenLM”, AEE Intec, Austria) 

Grey Box [93] 

3 100% renewable district heating Leibnitz (AEE Intec, Austria) Grey + White Box [94] 

4 Flexible energy system integration (Project “Flexi-Sync”, AIT, 

Austria) 

Grey Box [95] 

5 Temperature optimisation for low-temperature district heating 

(Project “TEMPO”, VITO/EnergyVille, Belgium) 

Grey Box [96][97] 

6 Application of the STORM controller in Rottne (Project 

“STORM”, VITO, Belgium) 

Grey Box [98] 

7 Demand response in student apartment buildings (VTT Finland) Black Box [99] 
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7.1 Case study 1: Peak shaving in Turin district heating (Politecnico di 
Torino, Italy) 

This case study investigates the implementation of demand response strategies within the largest DHN in 

Italy in Turin. The network comprises a singular transport pipeline connecting various thermal plants to the 

urban area, complemented by 182 distribution networks that link buildings to the transport system, resulting 

in a total of 6,500 substations. The system operates as a second-generation DHN, with supply temperatures 

reaching 120 °C and return temperatures varying between 50 °C and 70 °C. 

The main challenge identified in this system is the significant thermal peak occurring in the morning, which 

is attributed to heating systems being switched off overnight (nighttime setback), leading to a cooling of 

building thermal mass. The subsequent high demand arises as water in the distribution network, heat ex-

changers, and building heating systems ramp up the temperature during the morning hours. 

The objective of the demand-side management (DSM) in this system is peak shaving, which involves adjust-

ing the start-up times for heating systems in buildings to mitigate the thermal peak. In this case study, only 

one distribution grid with about 100 connected buildings is considered. However, only a fraction of these 

buildings has a changeable schedule that can lead to load shifting. It is assumed that no significant indoor 

comfort degradation will occur as schedule modifications are always shorter than 20 minutes. 

A genetic algorithm optimizer is used for dynamic adjustments of building heating schedules, taking into 

account real-time data inputs, and building heat load forecasting. This genetic algorithm optimizer can be 

conceptualized as a black box model. Key inputs to the model include substations data for demand forecast-

ing, alongside sensors monitoring flow rates at the primary sides of heat exchanger, temperature at the inlet 

and outlet of the primary and secondary side of the heat exchangers, as well as ambient temperature. The 

effects of network dynamics are integrated by a thermo-fluid dynamic model, which helps capture the broader 

impact of load shifting on the system. The output of the optimizer involves control commands that switch off 

heating systems in buildings for up to 20 minutes, effectively reducing peak demand. 

The experimental results indicate that a significant peak reduction is achievable: From 5% to 10% of peak 

reduction when activating less than 30% for a maximum of 20 minutes. Furthermore, simulation analysis 

reveals that when all buildings are included and the allowed activation extends to 60 minutes, it is possible 

to completely shave the morning peak [92]. 

 

7.2 Case study 2: Data-driven automated demand-side management 
technology (Project “DataDrivenLM”, AEE Intec) 

The project "DataDrivenLM" explores an innovative, automated, data-driven approach for load management 

in small DHNs, specifically tailored for a typical Austrian medium-sized network. This network serves a few 

hundred customers in a rural area, utilizing a biomass/wood chip boiler as the primary heat source, supple-

mented by an oil boiler for rare peak demands. The main challenge addressed is the occurrence of infrequent 

peaks due to weather conditions and frequent peaks resulting from building operations, which are costly to 

manage. 

The present demand-side management strategy aims to flatten the overall load, avoid peaks, and prevent 

very low partial loads. This is achieved by forecasting fixed customer demands and optimizing flexible cus-

tomer usage. The system employs an MPC approach, integrating various components such as sensors at 
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customer sites to monitor supply and return temperatures, setpoints, volume flow, power and energy, valve 

positions, pressure, and ambient temperature. A bi-directional data exchange is established between con-

nected customers and central servers via an API (Application programming interface), facilitating real-time 

data flow. 

The central server, on which the MPC is running, learns the heating curves of buildings and individual cus-

tomer control settings from measurement data and can be seen as a grey box model. It utilizes data-driven 

thermal load models to predict 15-minute average power demands, forecast fixed customer needs, and op-

timize flexible customer operations. The ambient temperature value at the customer, that is used to control 

the heating curve of the building, is manipulated as a control variable to manage flexible customers, with 

optimization conducted at a 15-minute rate over a 36-hour horizon. 

The results indicate that the implementation of this DSM strategy facilitates reusing existing infrastructure. 

Since there are no hardware requirements, there is a low barrier for implementation and this DSM strategy, 

and offers a cost-effective solution for existing infrastructure. Replication for larger DHNs is possible, but not 

economically feasible. In addition, the simplified building models at the core of the current MPC might not be 

suitable for controlling more complex building blocks [93]. 

 

7.3 Case study 3: 100% renewable district heating Leibnitz (AEE Intec, 
Austria) 

This case study presents the implementation of a smart control system for interconnected DHNs, within the 

ThermaFlex research project. The primary aim was to facilitate the use of RES and fluctuating industrial 

waste heat, while increasing overall system efficiency. The project encompasses three DHNs in Leibnitz: 

Tillmitsch, Leibnitz, and Leibnitzerfeld, each with varying biomass and gas boiler capacities. The Tillmitsch 

network is equipped with two 800 kW biomass boilers and serves an annual heat demand of approximately 

4 GWh, supported by a thermal storage of 25 m³. The Leibnitz network features a 3.2 MW biomass boiler 

and a 2.4 MW biomass boiler, collectively supplying around 12 GWh annually, with a thermal storage capacity 

of 75 m³. The Leibnitzerfeld network, on the other hand, has a 6 MW gas boiler for an annual heat demand 

of 14 GWh, relying on 223 m³ of thermal energy storage and the potential to harness 4.5 MW of industrial 

waste heat along with a constant 500 kW output from a biogas combined heat and power (CHP) system. 

The central challenge here is the need to increase the efficiency of the DHN and its energy producers while 

coordinating multiple feed-in points across the interconnected grids. As part of the project's broader impact, 

a comprehensive communication campaign was launched across various channels to inform citizens about 

the DH system expansion, emphasizing the importance of the project for climate protection and positioning 

Leibnitz as a leader in proactive climate policy. Furthermore, a comprehensive strategy is employed consist-

ing of two parts. First, energy management system (EMS) that utilizes MPC to optimally schedule DH pro-

duction units by predicting thermal demands based on historical data and weather forecasts. The model 

incorporates energy supply characteristics, thermal energy storage, and consumer profiles, each represented 

by mathematical grey-box models that capture their operational dynamics and constraints. Secondly, a DSM 

controller employes a mixed-linear regression model for the demand forecasting of each consumer, distin-

guishing between workdays and non-workdays. The DSM controller performs mixed-integer linear optimiza-

tion every 15 minutes to provide real-time operational commands to the SCADA (Supervision Control and 

Data Acquisition) systems managing the networks. During operation, the system distinguishes between day 

and night operation. The DSM further refines the supply capacity limits for substations, ensuring that demand 

peaks are managed efficiently while minimizing energy costs and CO2 emissions. 
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Preliminary evaluations using historical data and simulations revealed promising results. The approach 

demonstrated a cost reduction of approximately 9% and a remarkable 45% decrease in greenhouse gas 

emissions for the entire network. The CO2 emissions were reduced by 35%, and the fuel costs were reduced 

by 7%. Further tests showed a reduction of larger peaks but also revealed oscillations in the load curve due 

to synchronization of safety measures. The differentiation between working days and non-working days ap-

pears to be crucial for the demand forecast. Improvements seem possible if the DSM is coordinated with the 

DH supply and the management of the TES. The energy storage capacity in the thermal inertia of the build-

ings’ structure connected to the DHN could further improve the performance of the DSM. Notably, fossil fuel 

use could be further replaced by waste heat and biomass. In addition, not all customers’ demand profile can 

be flattened by the DSM strategy. The reason could be that the consumer substation is oversized. Simulation 

studies indicate that direct control of gas boilers and longer prediction horizons may lead to further perfor-

mance improvements [94]. 

 

7.4 Case study 4: Flexible energy system integration (Project “Flexi-
Sync”, AIT, Austria) 

The project “Flexy-Sync” focuses on the district heating grid of Maria Laach, a rural area with 30 heat con-

sumers and a 1.5 km network span. The grid is primarily powered by two 600 kW biomass boilers, serving 

key consumers such as restaurants, hotels, a school, public buildings, and multifamily apartments, which 

collectively account for approximately 50% of the annual demand of 1650 MWh/year. Several substations 

were equipped with buffer storage and new substation controllers to enhance grid capabilities. Customers 

were informed about the project at an early stage, though they were not directly involved in the testing phase. 

The main challenge in this grid is its insufficient flexibility and missing DSM, which limits the integration of 

new customers, and high operation costs due to expensive peak loads. The new DSM objectives include 

integrating flexibility into the heating grid to better incorporate fluctuating renewable energy, reducing peak 

loads, leverage building thermal inertia. The project also aims to replace peak boilers with CHP systems, 

allow new customer integration, achieve cost savings, and enable remote adjustments of substation control-

lers. 

The model at the core of the DSM is a data-driven approach, utilizing machine learning and historical data 

from each substation to calibrate simplified grey box models. An optimization software was used to find the 

optimal substation schedule, taking into account the weather forecast. The data transfer is done with an API 

connection between the DH grid and the EnergyPredict software. The optimization scheme creates a two-

day operation plan, which is then communicated back to the thermal grid operating system via an API. The 

front end provides a basic web interface for user-initiated optimization requests. 

The project results indicate that an increase of flexibility in actual day-to-day operation can be achieved. Peak 

load could be decreased by about 6% (80 kW). Live tests during a spring month show 7% energy savings 

(6 MWh). Furthermore, no increase in complaints by tenants about thermal comfort is noted. With a CHP 

plant in Maria Laach, excess electricity can also be used for stabilization of the power grid. However, tests 

with day-to-day operation including five different types of buildings show too high costs for the implementation 

in small rural grids. Therefore, a low-cost solution must be found [95]. 
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7.5 Case study 5: Temperature optimisation for low-temperature district 
heating (Project “TEMPO”, VITO/EnergyVille, Belgium) 

The project “TEMPO” is conducted in the main DHN in Brescia, Italy, that is operational since 1972 and is 

serving 21,500 customers with an annual energy supply of 1000 GWh. The specific study was conducted in 

2018, focusing on a multi-story residential complex comprising 43 buildings connected to the main DHN. The 

network operates with supply temperatures ranging from 90°C to 130°C and a return temperature of approx. 

60°C. The demonstration site includes one apartment building and 35 single-family houses, where the return 

and supply temperatures are dynamically mixed at the substation to control the supply temperature to the 

demo network branch. A mixing station is located between the main network and the buildings, mixing hot 

water from the main network with return water from the building. The base load is supplied by a waste-to-

energy plant, with additional heat recovery from two steel production plants. For winter peaks, a CHP and a 

gas boiler plant are used. 

The primary challenge in this case is to address the high cost of peak power production plants. The goal of 

the current DSM is thus to achieve peak shaving and reduce the reliance on expensive fossil-based peak 

boiler operations. 

The controller employed for this DSM strategy is a data driven MPC implemented on the VITO platform. It 

integrate data flow from sensors for supply and return temperatures on the secondary side of the building 

substation, heat meter data on the primary side, and indoor temperature sensors, all operating at a 15-minute 

logging frequency. The sensor data is collected via an API, and control signals are sent back to the systems 

of the demo site. Control signals are computed based on measurements and energy forecasts, and then sent 

to the customers to add a negative or positive offset to the outdoor temperature sensor, which in turns influ-

ence the heating curve of the heating system in the building. Throughout the project, it was observed that 

indoor temperature sensors were removed or relocated, highlighting the importance of stakeholder involve-

ment in practical implementation, communication, and consultation. 

Two test periods are investigated. The first test period during the fall has outdoor temperatures between 8°C 

and 14°C. The DSM strategy reduced the daily energy peak by 330 kWh on average, and achieved up to 

700 kWh of peak reduction, which is a 60% to 70% reduction compared to the baseline. Most of the time, the 

supply temperature is kept to the lower limit of 80°C. In early mornings and afternoons, the supply tempera-

ture is increased to pre-charge the DH grid and lower the upcoming peaks. The second test period during 

winter has outdoor temperatures between 1°C and 6°C. During this test period, the substations behave un-

expectedly. The Results cannot be attributed to control algorithm behavior. Capacity problems in heat ex-

changers lead to higher supply temperatures than the anticipated lower limit of 80°C. The low outdoor tem-

peratures lead to high energy demand and therefore high supply temperatures. 

This project exemplifies the integration of advanced control strategies in operational district heating networks, 

demonstrating the potential of MPC in enhancing demand response capabilities and optimizing energy use. 

The study underscores the complexity of dynamic temperature control in DHNs and the challenges of imple-

menting such advanced control strategies across different seasonal conditions [96][97]. 
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7.6 Case study 6: Application of the STORM controller in Rottne (Pro-
ject “STORM”, VITO, Belgium) 

This project presents the implementation of the STORM Controller in the DHN of Rottne, Sweden, which 

comprises 180 connections and substations, predominantly serving small and large houses, with a significant 

proportion of multifamily houses, industries, public buildings, and offices. The project specifically focused on 

nine of the largest customer substations, which account for 34% of Rottne's total heat demand. The network, 

a 3rd generation DH system, operates with supply heat temperatures ranging from 75°C to 110°C, supported 

by two biomass boilers and a peak boiler using wood and bio-oil. The evaluation period ran from March 2018 

to January 2019. 

The primary challenge addressed in this project is the reliance on an costly boiler running on rapeseed methyl 

ester for peak loads during winter. The specific aim of this project is thus to minimize heat production from 

peak units by prioritizing base load units up to their full capacity. 

The DSM objective is to shift and reduce heat demand on cold winter days to mitigate demand peaks. The 

STORM Controller, targeting large building owners, non-residential buildings, and housing cooperatives, op-

erates on the VITO platform. The control strategy focused on shifting heat production from expensive peak 

loads (above 2.5 MW) to more economical baseloads. The model comprises several components: a fore-

caster predicting future demand profiles and estimating thermal flexibility, a planner creating optimized heat 

load control plans, a tracker dispatching control signals to building agents, and agents negotiating contribu-

tions to the heat load plan. Inputs to the model include sensor and measured data collected via an API, such 

as supply and return temperatures, heat meter data, and indoor temperature sensors. This data is sent to 

VITO, where the STORM Controller calculates control signals, which are then relayed back to the customers. 

The control strategy aims to reduce reliance on peak units with higher fuel costs by shifting heat loads above 

base load capacity to times of lower demand. This is achieved by manipulating the outdoor temperature 

sensor to influence the heating curve and demand of buildings. 

Results of this project show that while the total heat load in all months except November increases by 69.1 

MWh during the testing period, the controllable heat load decreases by 12.7 MWh during the testing period. 

However, overall higher heat load disturbs peak shaving testing and evaluation of the results. The overall 

peak heat production is reduced by 7.4 MWh (3.1%) compared to the reference period without STORM 

controller. Apart from January, all months show an absolute peak load reduction of up to 7.9 MWh. When 

excluding January, peak heat production is reduced by 19.8 MWh (12.7%). Notably, the controllable heat 

load remained consistently lower than the reference in all evaluated months, demonstrating the effectiveness 

of the STORM control strategy [98]. 

 

7.7 Case study 7: Demand response in student apartment buildings 
(VTT Finland) 

This case study investigates demand response strategies in the district heating market through field tests 

conducted in 27 residential buildings in Tampere, Finland, with construction years ranging from 1929 to 2009. 

These multi-story concrete buildings, equipped with various types of ventilation systems, were tested be-

tween February and March 2018. 

The primary challenge addressed in this study is the occurrence of high demand peaks, particularly during 

peak hot water usage times such as mornings and evenings when many residents are showering 
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simultaneously. The DSM thus aims to reduce peak plant operation and fossil fuel usage, aligning with Fin-

land's National Energy and Climate Strategy objectives for 2030. The strategy focuses on reducing heat 

demand without compromising comfort by managing demand in heating radiators during domestic hot water 

demand peaks, prioritizing domestic hot water demand over space heating. 

The investigated controller employs a data-driven model hosted on the Talotohtori cloud, featuring a core 

standardized data model and a cloud-based building management system. The model's components include 

IoT sensors for real-time tap water monitoring, indoor temperature and humidity measurements, the Talotoh-

tori cloud for monitoring and analysis, and a valve for DHW management. Inputs from the system’s sensor 

are sent to the cloud at ten-minute logging frequency. The building management system calculates the av-

erage temperature and adjusts heating based on deviations from the desired temperature. The algorithm 

monitors the DHW valve position and district heating supply to activate peak shaving. The DHW valve's 

actuator state is monitored, and energy for heating is reduced when a threshold is exceeded by restricting 

the valve. 

The results of this project show that peak demand reduction of 12 to 15% on average is possible by activating 

demand response. The highest impact is achieved on the newest buildings, but improvements are also no-

ticeable in older buildings. During the testing period from February to March, the normalized energy con-

sumption of eight buildings is reduced by an average of 11%. This represents a 9% decrease in the annual 

energy consumption, costs and GHG emissions. Furthermore, since the case buildings have already had 

heating optimizations before, a bigger energy saving potential can be expected if buildings have no heating 

optimizations in the first place. Overall, demand response helps to achieve the objectives of the National 

Energy and Climate Strategy for 2030 [99]. 
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8. Conclusions and Perspectives 

This report provides a comprehensive overview of state-of-the-art methods, frameworks, software, numerical 

tools and algorithms relevant to smart thermal management of individual buildings and building clusters con-

nected to district heating and cooling networks. It covers aspects such as dynamic modelling, large data 

treatment and analysis, automated fault detection and digital twins for the orchestration of the smart thermal 

operation, and demand response of buildings integrated into thermal grids. 

Only a few of the existing commercial modelling tools used by engineers and operators are suited for the 

simulation, study and optimisation of cluster of buildings performing demand response and building-to-grid 

services for thermal networks. Advanced multi-domain modelling and co-simulation frameworks capable ex-

ist and can handle many aspects of the coupling between the indoor thermodynamics of the buildings, heat-

ing and cooling networks, and advanced control strategies. However, they come with a sharp learning curve. 

Moreover, despite the growing adoption of the Functional Mock-up Interface and the development of appli-

cation programming interfaces for general-purpose programming languages like Python or MATLAB, interop-

erability issues remain and hinder seamless integration between different domain-specific modelling tools. 

Furthermore, model scalability remains a challenge in terms of computation time and solver stability. At the 

moment, it is difficult to run large-scale dynamic simulations with thousands of buildings operating under 

hourly time steps to provide demand response services to a thermal grid over a full year. Future development 

of building and thermal network modelling tools should be more user-friendly, simplifying co-simulation frame-

works and improving documentation to lower the entry barrier for engineers and utility operators, while main-

taining a balance between accuracy and computational efficiency when scaling up in building cluster size. 

Several solutions and research directions are gaining traction and popularity as they present great potential 

to improve efficiency of district heating and cooling networks and the smart operation of building clusters 

providing building-to-grid services. The increasing availability of smart heat meter data with hourly temporal 

resolution unlocks new opportunities to gain key insights on the building end-users for district heating utility 

companies. Detailed knowledge about space heating and sanitary hot water demand profiles in large clusters 

of buildings is necessary to detect under-performing systems, optimize the operation of the entire thermal 

network, and develop new business models and advanced control strategies to improve supply/return fluid 

temperature and mitigate peak production bottlenecks. Active research is being carried out to ease and ad-

vance big data analytics for district heating and cooling systems, to tackle pre-processing challenges such 

as imputation of missing data, low measurement resolution of energy demand, or disaggregation of space 

heating and domestic hot water production from total main smart heat meter data. 

The continuous stream of high-resolution building data can also be leveraged to generate and run digital 

twins of district heating and cooling systems (Virtual replicas of physical systems with two-way communica-

tion to the latter). Digital twins can help with real-time performance assessment and forecasting, energy and 

cost optimization of thermal network operation, peak load management, integration of renewable energy 

sources and fault detection and diagnosis. Regarding the latter, increasing efforts are dedicated to the de-

velopment of AI- and machine learning-based algorithms for the automated detection and diagnosis of faults 

in district heating and cooling networks and their related sub-systems inside the buildings. The systematiza-

tion of such frameworks would unlock predictive maintenance at scale and greatly contribute to the overall 

energy and cost efficiency and service reliability of thermal networks. However, the main challenge in the 

further development of automated fault detection and diagnosis algorithms remains to be the lack of high-

quality data with standardized labeled ground truth on fault status, origine and consequences. 

Finally, greater efforts should be dedicated to real-world implementation, deployment and demonstration of 

these aforementioned applications and demand response strategies across the large diversity of data 
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structures, hardware, software, systems, customers, control strategies and communication protocols. Cur-

rently, their interoperability, portability, and scalability are limited, hindering business models supporting 

them. The use of standardized ontologies, building information models, and semantic principles are seen as 

key technologies to tackle these challenges and unlock seamless deployability. 
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